organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Propargylaminyl 3*α*-hydroxy-11-oxo-18βolean-12-en-29-oate

Laszlo Czollner,^a Ulrich Jordis^a and Kurt Mereiter^{b*}

^aInstitute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, A-1060 Vienna, Austria, and ^bInstitute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164SC, A-1060 Vienna, Austria

Correspondence e-mail: kurt.mereiter@tuwien.ac.at

Received 25 August 2011; accepted 20 October 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.033; wR factor = 0.089; data-to-parameter ratio = 13.3.

The title compound, $C_{33}H_{49}NO_3$, is the propargylamide of 18 β -glycyrrhetinic acid, a pentacyclic triterpenoid of interest as a therapeutic agent. The five six-membered rings of the glycyrrhetinic acid moiety show normal geometries, with four rings in chair conformations and the unsaturated ring *C* in a half-chair conformation. In the crystal, the terminal *N*-propargylcarboxamide group has remarkable structural effects on weak hydrogen-bond-like interactions. Particularly noteworthy are an intermolecular $O-H\cdots\pi$ interaction accepted side-on by the terminal alkyne group $[O\cdots C = 3.097 (2) \text{ and } 3.356 (2) \text{ Å}]$ and a short intermolecular $C-H\cdots O$ interaction $[C\cdots O = 3.115 (2) \text{ Å}]$ donated by the alkyne C-H group. An $N-H\cdots O$ $[N\cdots O = 3.251 (2) \text{ Å}]$ and a $C_{alkyl}-H\cdots O$ $[C\cdots O = 3.254 (2) \text{ Å}]$ interaction complement the crystal structure.

Related literature

For general information on the therapeutic aspects of the parent compounds glycyrrhizin and 18β -glycyrrhetinic acid, see: Baran *et al.* (1974); Kitagawa (2002); Asl & Hosseinzadeh (2008). For the synthesis of derivatives of 18β -glycyrrhetinic acid with a therapeutic background, see: Su *et al.* (2004); Beseda *et al.* (2010). For the crystal structures of 18β -glycyrrhetinic acid and derivatives, see: Campsteyn *et al.* (1977); Alvarez-Larena *et al.* (2007); Beseda *et al.* (2010); Amer *et al.* (2010). For the crystal structure data of several *N*-propargyl-carboxamides, see: Hashmi *et al.* (2004); Frey *et al.* (2008). For weak hydrogen bonds involving C=C-H moieties, see: Desiraju & Steiner (1999).

Experimental

Crystal data

 $\begin{array}{l} C_{33}H_{49}NO_{3}\\ M_{r}=507.73\\ Orthorhombic, P2_{1}2_{1}2_{1}\\ a=6.7534 \ (8) \ \text{\AA}\\ b=13.4879 \ (16) \ \text{\AA}\\ c=31.132 \ (4) \ \text{\AA} \end{array}$

Data collection

```
Bruker Kappa APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
T<sub>min</sub> = 0.87, T<sub>max</sub> = 0.97
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.089$ S = 1.084658 reflections 349 parameters $0.56 \times 0.43 \times 0.38$ mm 41876 measured reflections

V = 2835.8 (6) Å³

Mo $K\alpha$ radiation

 $\mu = 0.07 \text{ mm}^{-1}$

T = 100 K

Z = 4

41876 measured reflections 4658 independent reflections 4531 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.21 \text{ e Å}^{-3}$

Table 1

Hydrogen-bond and $O-H \cdots \pi$ geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$01 - H10 \cdots C32^{i}$ $01 - H10 \cdots C33^{i}$ $N1 - H1N \cdots O2^{ii}$	0.81 (2) 0.81 (2) 0.80 (2)	2.57 (2) 2.40 (2) 2.57 (2)	3.3559 (17) 3.0973 (17) 3.2511 (15)	164 (2) 145 (2) 144 (2)
$C31 - H31B \cdots O1^{m}$ $C33 - H33 \cdots O2^{iv}$	0.99 0.95	2.56 2.27	3.2541 (17) 3.1154 (17)	127 148
				1

Symmetry codes: (i) $-x + \frac{3}{2}, -y + 1, z - \frac{1}{2}$; (ii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) $-x + \frac{1}{2}, -y + 1, z + \frac{1}{2}$; (iv) $-x + 2, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*, *SADABS* and *XPREP* (Bruker, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

The work was supported by the ZIT Zentrum für Innovation und Technologie GmbH (Vienna Spot of Excellence, 182081). Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2102).

References

- Alvarez-Larena, A., Brianso, J. L., Capparelli, M. V., Farran, J. & Piniella, J. F. (2007). Afinidad, 64, 278–283.
- Amer, H., Mereiter, K., Stanetty, C., Hofinger, A., Czollner, L., Beseda, I., Jordis, U., Kueenburg, B., Classen-Houben, D. & Kosma, P. (2010). *Tetrahedron*, **66**, 4390–4402.
- Asl, M. N. & Hosseinzadeh, H. (2008). *Phytother. Res.* 22, 709–724.
- Baran, J. S., Langford, D. D., Liang, C. & Pitzele, B. S. (1974). J. Med. Chem. 17, 184–191.
- Beseda, I., Czollner, L., Shah, P. S., Khunt, R., Gaware, R., Kosma, P., Stanetty, C., del Ruiz-Ruiz, M. C., Amer, H., Mereiter, K., Da Cunha, T., Odermatt, A., Classen-Houben, D. & Jordis, U. (2010). *Bioorg. Med. Chem.* 18, 433– 454.

- Bruker (2008). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Campsteyn, H., Dupont, L., Lamotte, J., Dideberg, O. & Vermeire, M. (1977). Acta Cryst. B33, 3443–3448.
- Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.
- Frey, W., Schetter, S., Rominger, F. & Hashmi, A. S. K. (2008). Acta Cryst. E64, 01495.
- Hashmi, A. S. K., Weyrauch, J. P., Frey, W. & Bats, J. W. (2004). Org. Lett. 6, 4391–4394.
- Kitagawa, I. (2002). Pure Appl. Chem. 74, 1189-1198.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Su, X., Lawrence, H., Ganeshapillai, D., Cruttenden, A., Purohit, A., Reed, M. J., Vicker, N. & Potter, B. V. L. (2004). *Bioorg. Med. Chem.* 12, 4439–4457.
 Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Acta Cryst. (2011). E67, o3052-o3053

Acta Cryst. (2011). E67, o3052-o3053 [doi:10.1107/S1600536811043534]

Propargylaminyl 3α-hydroxy-11-oxo-18β-olean-12-en-29-oate

L. Czollner, U. Jordis and K. Mereiter

Comment

18β-glycyrrhetinic acid (GA) is a pentacyclic triterpene and the aglycone of glycyrrhizin, the main sweet tasting compound from liquorice root in use as flavoring and sweetener (Kitagawa, 2002). GA is a therapeutic agent with a broad range of activity by modulating the steroid hormone cortisol (Baran et al., 1974; Asl & Hosseinzadeh, 2008). One strategy to improve or modify its therapeutic profile is to leave the triterpene core of GA unaltered and to attach suitable functional groups to its 3-hydroxy group (Su et al., 2004). An example for this strategy is the hydrogen succinate of GA, the licenced anti-ulcer drug Carbenoxolone. An analogous approach was used for the title compound (I), here however with the COOH group at the opposite side of GA functionalized by a propargylamide group. The synthesis of this compound and a series of relatives was recently described (Beseda et al., 2010). Here we report the crystal structure of this compound. The molecular structure of (I) is shown in Fig. 1. The GA core of the molecule consists of four six-membered rings A, B, D, and E in chair conformation and the unsaturated ring C in half-chair conformation (Fig. 1). The GA core agrees well in bond lengths, bond angles, and conformation with related compounds (Campsteyn et al., 1977; Alvarez-Larena et al., 2007; Beseda et al., 2010) and needs no further discussion. The carboxamide group O3=C29—N1 is *exo*-oriented with respect to N, C18—C20—C29—N1 = 162.3 (1)°. In case of *endo*-orientation (rare) this angle is about -30° (for examples, see: Amer *et al.*, 2010). The propargyl group has a C32≡C33 bond length of 1.197 (2) Å and an orientation defined by the torsion angle C29—N1—C31—C32 = 106.5 (1)°. In N-propargylcarboxamides this torsion angle varies widely (Hashmi et al., 2004; Frey et al., 2008). In the unit cell the molecules of (I) are aligned with their longest direction slightly inclined to the *c*-axis and adopt in this direction an undular head-to-tail-like arrangement (Fig. 2). Along the short a-axis (6.75 Å) the molecules are stacked directly upon each other by translation. Coherence of the structure is provided by a combination of van der Waals and weak hydrogen bond interactions listed in Table 1. Most interesting in this respect are the interactions of the N-propargylcarboxamide group outlined in Fig. 3. The terminal alkyne group C32=C33—H33 has a distinctly acidic hydrogen atom and forms the by far shortest weak hydrogen bond-like interaction of the structure with distances of $H33\cdots O2^{iv} = 2.27$ Å and $C33\cdots O2^{iv} = 2.27$ Å 3.115 (2) Å to the 11-keto-oxygen of the compound. After normalization (C-H = 1.083 Å; Desiraju & Steiner, 1999), the distance H33···O2^{iv} is 2.16 Å, distinctly shorter than the mean distance $d(H \cdot \cdot O) = 2.29$ (3) Å reported by Desiraju & Steiner (1999; Table 2.3 of this reference) for C=C-H···O=C< entities. The second remarkable association in Fig. 3 is the intermolecular O—H··· π interaction from the hydroxy group O1^v—H10^v side-on to the two alkyne carbon atoms C32 and C33. The normalized H10V...C distances (O1-H10 normalized to 0.983 Å), are 2.26 Å to C33 and 2.41 Å to C32, and correspond to the shortest O—H $\cdots\pi$ interactions reported by Desiraju & Steiner (1999; Table 3.12 of this reference). Comparable C—H···O and X—H··· π interactions with mostly longer respective interatomic distances can be found in a small group of N-propargylcarboxamide containing crystal structures reported by Hashmi and coworkers in context with oxazole ring forming reactions (Hashmi et al., 2004; Frey et al., 2008).

Experimental

The synthesis and properties of the title compound were described by Beseda *et al.* (2010). Platy colourless crystals for X-ray diffraction were obtained from CH_2Cl_2 by diethyl ether vapour diffusion at ambient temperature.

Refinement

The two N– and O–bonded hydrogen atoms were located by a Fourier map and were the refined in *x*, *y*, *z*, and U_{iso} . All C-bonded H atoms were placed in calculated positions and thereafter treated as riding with CH = 1.00 Å, CH₂ = 0.99 Å and CH₃ = 0.98 Å. A torsional parameter was refined for each methyl group. $U_{iso}(H) = 1.2U_{eq}(C_{non-methyl})$ and $U_{iso}(H) = 1.5U_{eq}(C_{methyl})$ were used. Because of insignificant anomalous dispersion effects, the 3501 Friedel pairs were merged prior to the final refinement. The absolute structure of the parent compound 18β-glycyrrhetinic acid is known.

Figures

Fig. 1. The molecular structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level. Red capitals are the ring designations.

Fig. 2. Packing diagram of (I) in a view along the *a*-axis. Dashed lines indicate weak O—H···C, N—H···O and C—H···O interactions outlined in section Comment.

Fig. 3. Close-up of the *N*-propargylcarboxamide group in (I) and its weak O—H···C, N—H···O and C—H···O interactions. Numbers with two decimal places are H···acceptor distances, numbers with three decimal places are corresponding C/N/O—acceptor distances (Å). Symmetry codes ii, iii, and iv are given in Table 1, code v is -x + 3/2, -y + 1, z + 1/2.

Propargylaminyl 3α-hydroxy-11-oxo-18β-olean-12-en-29-oate

Crystal data

C₃₃H₄₉NO₃ $M_r = 507.73$ Orthorhombic, P2₁2₁2₁ Hall symbol: P 2ac 2ab a = 6.7534 (8) Å b = 13.4879 (16) Å c = 31.132 (4) Å F(000) = 1112 $D_x = 1.189 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \rightarrow A Cell parameters from 9975 reflections $\theta = 2.5-31.0^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 100 K V = 2835.8 (6) Å³ Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer	4658 independent reflections
Radiation source: fine-focus sealed tube	4531 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.026$
ϕ and ω scans	$\theta_{\text{max}} = 30.0^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2008)	$h = -9 \rightarrow 9$
$T_{\min} = 0.87, \ T_{\max} = 0.97$	$k = -18 \rightarrow 18$
41876 measured reflections	$l = -43 \rightarrow 43$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.033$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.089$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.08	$w = 1/[\sigma^2(F_o^2) + (0.0593P)^2 + 0.405P]$ where $P = (F_o^2 + 2F_c^2)/3$
4658 reflections	$(\Delta/\sigma)_{max} < 0.001$
349 parameters	$\Delta \rho_{max} = 0.36 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Block, colourless

 $0.56 \times 0.43 \times 0.38 \text{ mm}$

Special details

Geometry. All e.s.d.'s are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

											,
Engotional	atomio	a a andin at an	and in at	amia an	againglan	+ in atuani.	a dia	nlacomont	n an am of one	1 14	- 1
Fracional	alomic	coorainales	ana isoir	onic or	eauivaien		c ais	nacement	parameters	IA.	,
1		000.0000000							p	1	/

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.33309 (16)	0.31149 (7)	-0.07972 (3)	0.02015 (19)
H1O	0.442 (4)	0.2913 (16)	-0.0864 (7)	0.037 (6)*
O2	0.69829 (15)	0.41262 (7)	0.11669 (3)	0.02086 (19)
O3	0.54563 (16)	0.58041 (7)	0.29778 (3)	0.0230 (2)
N1	0.44107 (17)	0.70328 (9)	0.34128 (3)	0.0200 (2)

H1N	0.359 (4)	0.7444 (15)	0.3467 (6)	0.036 (5)*
C1	0.48914 (18)	0.36216 (8)	0.03539 (3)	0.0145 (2)
H1A	0.5902	0.3298	0.0537	0.017*
H1B	0.3582	0.3510	0.0489	0.017*
C2	0.49087 (19)	0.31341 (8)	-0.00911 (4)	0.0151 (2)
H2A	0.6258	0.3179	-0.0214	0.018*
H2B	0.4570	0.2423	-0.0062	0.018*
C3	0.34512 (18)	0.36236 (8)	-0.03949 (4)	0.0145 (2)
Н3	0.2116	0.3569	-0.0258	0.017*
C4	0.38603 (19)	0.47405 (8)	-0.04565 (4)	0.0146 (2)
C5	0.38760 (18)	0.52135 (8)	0.00015 (3)	0.0134 (2)
Н5	0.2524	0.5076	0.0118	0.016*
C6	0.4025 (2)	0.63474 (9)	-0.00030 (4)	0.0185 (2)
H6A	0.5416	0.6548	-0.0053	0.022*
H6B	0.3206	0.6617	-0.0239	0.022*
C7	0.3310 (2)	0.67657 (9)	0.04257 (4)	0.0189 (2)
H7A	0.1891	0.6601	0.0463	0.023*
H7B	0.3428	0.7497	0.0419	0.023*
C8	0.44738 (18)	0.63652 (8)	0.08139 (3)	0.0136 (2)
С9	0.47071 (17)	0.52100 (8)	0.07863 (3)	0.01207 (19)
H9	0.3343	0.4950	0.0840	0.014*
C10	0.53109 (17)	0.47525 (8)	0.03395 (3)	0.01207 (19)
C11	0.59034 (18)	0.48589 (8)	0.11744 (3)	0.0141 (2)
C12	0.57055 (18)	0.54248 (8)	0.15768 (4)	0.0150 (2)
H12	0.6418	0.5195	0.1820	0.018*
C13	0.45862 (17)	0.62445 (8)	0.16244 (3)	0.0131 (2)
C14	0.33519 (18)	0.66155 (8)	0.12473 (4)	0.0138 (2)
C15	0.2914 (2)	0.77451 (9)	0.12719 (4)	0.0201 (2)
H15A	0.4054	0.8110	0.1150	0.024*
H15B	0.1743	0.7892	0.1091	0.024*
C16	0.2526 (2)	0.81288 (9)	0.17273 (4)	0.0206 (2)
H16A	0.1269	0.7843	0.1834	0.025*
H16B	0.2370	0.8858	0.1718	0.025*
C17	0.4198 (2)	0.78659 (9)	0.20414 (4)	0.0167 (2)
C18	0.44227 (18)	0.67238 (8)	0.20660 (3)	0.0139 (2)
H18	0.5696	0.6588	0.2219	0.017*
C19	0.27685 (19)	0.62085 (9)	0.23255 (4)	0.0164 (2)
H19A	0.1517	0.6249	0.2161	0.020*
H19B	0.3107	0.5498	0.2357	0.020*
C20	0.24291 (18)	0.66535 (9)	0.27734 (4)	0.0163 (2)
C21	0.2018 (2)	0.77698 (10)	0.27197 (4)	0.0203 (2)
H21A	0.0784	0.7862	0.2553	0.024*
H21B	0.1822	0.8074	0.3006	0.024*
C22	0.3723 (2)	0.82909 (9)	0.24901 (4)	0.0198 (2)
H22A	0.4924	0.8242	0.2671	0.024*
H22B	0.3393	0.9003	0.2460	0.024*
C23	0.2125 (2)	0.51640 (10)	-0.07188 (4)	0.0226 (3)
H23A	0.1912	0.4754	-0.0974	0.034*
H23B	0.2435	0.5844	-0.0807	0.034*

H23C	0.0923	0.5164	-0.0542	0.034*
C24	0.5763 (2)	0.49108 (10)	-0.07175 (4)	0.0205 (2)
H24A	0.5542	0.4710	-0.1016	0.031*
H24B	0.6841	0.4516	-0.0595	0.031*
H24C	0.6117	0.5615	-0.0708	0.031*
C25	0.75367 (19)	0.49072 (9)	0.02375 (4)	0.0169 (2)
H25A	0.8296	0.4909	0.0506	0.025*
H25B	0.7716	0.5542	0.0090	0.025*
H25C	0.8005	0.4368	0.0053	0.025*
C26	0.6530 (2)	0.68636 (9)	0.08061 (4)	0.0188 (2)
H26A	0.7187	0.6717	0.0533	0.028*
H26B	0.7334	0.6608	0.1044	0.028*
H26C	0.6375	0.7582	0.0837	0.028*
C27	0.13253 (18)	0.60715 (10)	0.12792 (4)	0.0190 (2)
H27A	0.0469	0.6422	0.1483	0.028*
H27B	0.1538	0.5391	0.1379	0.028*
H27C	0.0693	0.6060	0.0996	0.028*
C28	0.6161 (2)	0.83234 (10)	0.18927 (4)	0.0232 (3)
H28A	0.6539	0.8038	0.1615	0.035*
H28B	0.7194	0.8182	0.2105	0.035*
H28C	0.6005	0.9042	0.1863	0.035*
C29	0.42524 (18)	0.64604 (9)	0.30565 (4)	0.0158 (2)
C30	0.0673 (2)	0.61229 (11)	0.29881 (4)	0.0229 (3)
H30A	-0.0528	0.6233	0.2818	0.034*
H30B	0.0480	0.6388	0.3278	0.034*
H30C	0.0948	0.5411	0.3005	0.034*
C31	0.5958 (2)	0.68737 (9)	0.37267 (4)	0.0198 (2)
H31A	0.6567	0.6216	0.3676	0.024*
H31B	0.5365	0.6868	0.4017	0.024*
C32	0.7511 (2)	0.76365 (9)	0.37105 (4)	0.0189 (2)
C33	0.8791 (2)	0.82502 (10)	0.37026 (4)	0.0225 (2)
H33	0.9807	0.8737	0.3696	0.027*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0240 (5)	0.0186 (4)	0.0179 (4)	0.0004 (4)	-0.0040 (3)	-0.0042 (3)
O2	0.0255 (5)	0.0196 (4)	0.0175 (4)	0.0108 (4)	-0.0036 (4)	-0.0009 (3)
O3	0.0276 (5)	0.0207 (4)	0.0207 (4)	0.0077 (4)	-0.0027 (4)	-0.0045 (3)
N1	0.0178 (5)	0.0238 (5)	0.0186 (4)	0.0035 (4)	-0.0015 (4)	-0.0069 (4)
C1	0.0187 (5)	0.0115 (4)	0.0132 (4)	0.0004 (4)	0.0004 (4)	0.0013 (4)
C2	0.0184 (5)	0.0123 (4)	0.0147 (5)	0.0009 (4)	-0.0007 (4)	0.0011 (4)
C3	0.0163 (5)	0.0132 (4)	0.0139 (4)	-0.0009 (4)	-0.0012 (4)	-0.0006 (4)
C4	0.0186 (5)	0.0127 (4)	0.0125 (4)	-0.0004 (4)	-0.0012 (4)	0.0009 (4)
C5	0.0166 (5)	0.0116 (4)	0.0120 (4)	0.0009 (4)	-0.0014 (4)	0.0013 (4)
C6	0.0302 (6)	0.0117 (4)	0.0137 (4)	0.0015 (5)	-0.0027 (5)	0.0021 (4)
C7	0.0284 (6)	0.0135 (5)	0.0148 (5)	0.0057 (5)	-0.0044 (5)	0.0005 (4)
C8	0.0173 (5)	0.0105 (4)	0.0131 (4)	0.0012 (4)	-0.0013 (4)	0.0010 (4)

C9	0.0130 (4)	0.0118 (4)	0.0114 (4)	0.0018 (4)	-0.0004 (4)	0.0004 (4)
C10	0.0122 (4)	0.0118 (4)	0.0122 (4)	0.0009 (4)	0.0001 (4)	0.0008 (4)
C11	0.0158 (5)	0.0135 (4)	0.0132 (4)	0.0015 (4)	-0.0008 (4)	0.0009 (4)
C12	0.0170 (5)	0.0155 (5)	0.0126 (4)	0.0037 (4)	-0.0016 (4)	0.0005 (4)
C13	0.0130 (5)	0.0128 (4)	0.0133 (4)	-0.0001 (4)	-0.0003 (4)	0.0005 (4)
C14	0.0148 (5)	0.0125 (4)	0.0142 (4)	0.0024 (4)	-0.0018 (4)	-0.0007 (4)
C15	0.0289 (6)	0.0142 (5)	0.0172 (5)	0.0071 (5)	-0.0030 (5)	-0.0007 (4)
C16	0.0280 (6)	0.0150 (5)	0.0188 (5)	0.0068 (5)	-0.0025 (5)	-0.0022 (4)
C17	0.0207 (5)	0.0133 (5)	0.0162 (5)	0.0005 (4)	-0.0008 (4)	-0.0023 (4)
C18	0.0154 (5)	0.0126 (4)	0.0135 (4)	0.0004 (4)	-0.0005 (4)	-0.0013 (4)
C19	0.0169 (5)	0.0178 (5)	0.0147 (4)	-0.0019 (4)	0.0013 (4)	-0.0036 (4)
C20	0.0148 (5)	0.0189 (5)	0.0153 (4)	-0.0005 (4)	0.0012 (4)	-0.0038 (4)
C21	0.0213 (6)	0.0209 (6)	0.0186 (5)	0.0059 (5)	0.0008 (5)	-0.0053 (4)
C22	0.0273 (6)	0.0148 (5)	0.0174 (5)	0.0007 (5)	-0.0004 (5)	-0.0036 (4)
C23	0.0303 (7)	0.0190 (5)	0.0183 (5)	0.0053 (5)	-0.0091 (5)	0.0003 (4)
C24	0.0279 (6)	0.0184 (5)	0.0152 (5)	-0.0057 (5)	0.0041 (5)	0.0009 (4)
C25	0.0135 (5)	0.0195 (5)	0.0177 (5)	-0.0019 (4)	0.0014 (4)	-0.0015 (4)
C26	0.0223 (6)	0.0161 (5)	0.0179 (5)	-0.0051 (5)	0.0020 (4)	0.0000 (4)
C27	0.0132 (5)	0.0236 (5)	0.0200 (5)	0.0022 (4)	-0.0012 (4)	-0.0044 (4)
C28	0.0292 (7)	0.0172 (5)	0.0231 (6)	-0.0062 (5)	0.0022 (5)	-0.0015 (5)
C29	0.0166 (5)	0.0157 (5)	0.0150 (5)	-0.0029 (4)	0.0024 (4)	-0.0007 (4)
C30	0.0176 (5)	0.0302 (6)	0.0210 (5)	-0.0046 (5)	0.0048 (4)	-0.0044 (5)
C31	0.0201 (6)	0.0225 (6)	0.0168 (5)	-0.0013 (5)	-0.0017 (5)	-0.0021 (4)
C32	0.0186 (5)	0.0210 (5)	0.0171 (5)	0.0027 (5)	0.0013 (4)	-0.0032 (4)
C33	0.0189 (6)	0.0220 (5)	0.0266 (6)	0.0021 (5)	0.0025 (5)	-0.0028 (5)

Geometric parameters (Å, °)

O1—C3	1.4303 (14)	C16—C17	1.5354 (18)
O1—H1O	0.81 (2)	C16—H16A	0.9900
O2—C11	1.2284 (14)	C16—H16B	0.9900
O3—C29	1.2266 (15)	C17—C28	1.5339 (19)
N1—C29	1.3557 (15)	C17—C22	1.5438 (16)
N1—C31	1.4468 (17)	C17—C18	1.5498 (16)
N1—H1N	0.80 (2)	C18—C19	1.5439 (17)
C1—C2	1.5335 (15)	C18—H18	1.0000
C1—C10	1.5521 (15)	C19—C20	1.5352 (16)
C1—H1A	0.9900	С19—Н19А	0.9900
C1—H1B	0.9900	C19—H19B	0.9900
C2—C3	1.5165 (16)	C20—C29	1.5366 (17)
C2—H2A	0.9900	C20—C30	1.5381 (18)
C2—H2B	0.9900	C20—C21	1.5403 (18)
C3—C4	1.5434 (15)	C21—C22	1.5269 (19)
С3—Н3	1.0000	C21—H21A	0.9900
C4—C24	1.5373 (17)	C21—H21B	0.9900
C4—C23	1.5383 (18)	C22—H22A	0.9900
C4—C5	1.5622 (15)	C22—H22B	0.9900
C5—C6	1.5328 (15)	C23—H23A	0.9800
C5—C10	1.5597 (15)	С23—Н23В	0.9800

С5—Н5	1.0000	С23—Н23С	0.9800
C6—C7	1.5276 (16)	C24—H24A	0.9800
С6—Н6А	0.9900	C24—H24B	0.9800
С6—Н6В	0.9900	C24—H24C	0.9800
С7—С8	1.5397 (16)	C25—H25A	0.9800
С7—Н7А	0.9900	C25—H25B	0.9800
С7—Н7В	0.9900	С25—Н25С	0.9800
C8—C26	1.5429 (17)	C26—H26A	0.9800
C8—C9	1.5685 (15)	C26—H26B	0.9800
C8—C14	1.5837 (16)	C26—H26C	0.9800
C9—C11	1.5286 (15)	С27—Н27А	0.9800
C9—C10	1.5754 (15)	С27—Н27В	0.9800
С9—Н9	1.0000	С27—Н27С	0.9800
C10—C25	1.5505 (17)	C28—H28A	0.9800
C11—C12	1.4731 (15)	C28—H28B	0.9800
C12—C13	1.3475 (15)	C28—H28C	0.9800
C12—H12	0.9500	C30—H30A	0.9800
C13—C18	1.5232 (15)	С30—Н30В	0.9800
C13—C14	1.5243 (15)	С30—Н30С	0.9800
C14—C15	1.5539 (16)	C31—C32	1.4697 (18)
C14—C27	1.5561 (17)	C31—H31A	0.9900
C15—C16	1.5318 (17)	C31—H31B	0.9900
C15—H15A	0.9900	C32—C33	1.1973 (19)
C15—H15B	0.9900	С33—Н33	0.9500
С3—01—Н1О	109.5 (15)	H16A—C16—H16B	107.8
C29—N1—C31	121.67 (11)	C28—C17—C16	110.53 (10)
C29—N1—H1N	120.6 (15)	C28—C17—C22	107.66 (10)
C31—N1—H1N	117.5 (15)	C16—C17—C22	109.74 (10)
C2-C1-C10	113.20 (9)	C28—C17—C18	109.28 (11)
C2—C1—H1A	108.9	C16—C17—C18	109.45 (10)
C10—C1—H1A	108.9	C22—C17—C18	110.16 (9)
C2—C1—H1B	108.9	C13—C18—C19	109.49 (9)
C10—C1—H1B	108.9	C13—C18—C17	112.60 (9)
H1A—C1—H1B	107.8	C19—C18—C17	113.74 (10)
C3—C2—C1	111.83 (10)	C13—C18—H18	106.9
C3—C2—H2A	109.3	C19—C18—H18	106.9
C1—C2—H2A	109.3	C17—C18—H18	106.9
C3—C2—H2B	109.3	C20—C19—C18	114.03 (9)
C1—C2—H2B	109.3	С20—С19—Н19А	108.7
H2A—C2—H2B	107.9	C18—C19—H19A	108.7
O1—C3—C2	111.97 (9)	C20—C19—H19B	108.7
O1—C3—C4	111.69 (9)	C18—C19—H19B	108.7
C2—C3—C4	112.72 (10)	H19A—C19—H19B	107.6
O1—C3—H3	106.7	C19—C20—C29	109.58 (10)
С2—С3—Н3	106.7	C19—C20—C30	109.15 (10)
С4—С3—Н3	106.7	C29—C20—C30	106.84 (10)
C24—C4—C23	107.49 (10)	C19—C20—C21	108.10 (10)
C24—C4—C3	111.17 (10)	C29—C20—C21	111.87 (10)
C23—C4—C3	106.98 (10)	C30—C20—C21	111.27 (11)

C24—C4—C5	114.57 (10)	C22—C21—C20	111.39 (10)
C23—C4—C5	109.76 (10)	C22—C21—H21A	109.4
C3—C4—C5	106.64 (9)	C20—C21—H21A	109.4
C6—C5—C10	111.30 (10)	C22—C21—H21B	109.4
C6—C5—C4	113.55 (9)	C20—C21—H21B	109.4
C10—C5—C4	117.20 (9)	H21A—C21—H21B	108.0
С6—С5—Н5	104.4	C21—C22—C17	114.17 (10)
С10—С5—Н5	104.4	C21—C22—H22A	108.7
C4—C5—H5	104.4	C17—C22—H22A	108.7
C7—C6—C5	109.85 (10)	C21—C22—H22B	108.7
С7—С6—Н6А	109.7	C17—C22—H22B	108.7
С5—С6—Н6А	109.7	H22A—C22—H22B	107.6
С7—С6—Н6В	109.7	C4—C23—H23A	109.5
С5—С6—Н6В	109.7	C4—C23—H23B	109.5
H6A—C6—H6B	108.2	H23A—C23—H23B	109.5
C6—C7—C8	113.25 (10)	C4—C23—H23C	109.5
С6—С7—Н7А	108.9	H23A—C23—H23C	109.5
С8—С7—Н7А	108.9	H23B—C23—H23C	109.5
С6—С7—Н7В	108.9	C4—C24—H24A	109.5
С8—С7—Н7В	108.9	C4—C24—H24B	109.5
H7A—C7—H7B	107.7	H24A—C24—H24B	109.5
C7—C8—C26	107.12 (9)	C4—C24—H24C	109.5
C7—C8—C9	110.90 (9)	H24A—C24—H24C	109.5
C26—C8—C9	109.97 (10)	H24B—C24—H24C	109.5
C7—C8—C14	110.46 (9)	C10—C25—H25A	109.5
C26—C8—C14	110.56 (9)	C10—C25—H25B	109.5
C9—C8—C14	107.85 (9)	H25A—C25—H25B	109.5
C11—C9—C8	108.51 (9)	C10—C25—H25C	109.5
C11—C9—C10	116.09 (9)	H25A—C25—H25C	109.5
C8—C9—C10	117.61 (9)	H25B—C25—H25C	109.5
С11—С9—Н9	104.3	C8—C26—H26A	109.5
С8—С9—Н9	104.3	C8—C26—H26B	109.5
С10—С9—Н9	104.3	H26A—C26—H26B	109.5
C25—C10—C1	108.37 (9)	C8—C26—H26C	109.5
C25—C10—C5	114.24 (9)	H26A—C26—H26C	109.5
C1—C10—C5	107.33 (9)	H26B—C26—H26C	109.5
C25—C10—C9	112.28 (9)	С14—С27—Н27А	109.5
C1—C10—C9	108.19 (9)	С14—С27—Н27В	109.5
C5—C10—C9	106.18 (9)	H27A—C27—H27B	109.5
02	119.14 (10)	С14—С27—Н27С	109.5
02	123.22 (10)	H27A—C27—H27C	109.5
C12—C11—C9	117.63 (10)	H27B—C27—H27C	109.5
C13—C12—C11	124.71 (10)	C17—C28—H28A	109.5
C13—C12—H12	117.6	CT/C28H28B	109.5
C11—C12—H12	11/.0	$H_{2\delta}A - C_{2\delta} - H_{2\delta}B$	109.5
C12 - C13 - C18	119.21 (10)	C1/-C28-H28C	109.5
C12 - C13 - C14	119.44 (10)	$H_{2\delta}A - C_{2\delta} - H_{2\delta}C$	109.5
C18 - C13 - C14	121.08 (9)	$H_{28}B - C_{28} - H_{28}C$	109.5
C13—C14—C15	112.83 (9)	03—C29—N1	121.48 (12)

C13—C14—C27	106.08 (9)	O3—C29—C20	122.60 (11)
C15—C14—C27	106.96 (10)	N1-C29-C20	115.86 (11)
C13—C14—C8	108.94 (9)	С20—С30—Н30А	109.5
C15—C14—C8	110.00 (9)	С20—С30—Н30В	109.5
C27—C14—C8	112.00 (9)	H30A—C30—H30B	109.5
C16—C15—C14	114.17 (10)	С20—С30—Н30С	109.5
С16—С15—Н15А	108.7	H30A—C30—H30C	109.5
C14—C15—H15A	108.7	H30B-C30-H30C	109.5
C16—C15—H15B	108.7	N1—C31—C32	112.85 (11)
C14—C15—H15B	108.7	N1—C31—H31A	109.0
H15A—C15—H15B	107.6	C32—C31—H31A	109.0
C15—C16—C17	112.68 (11)	N1—C31—H31B	109.0
C15—C16—H16A	109.1	C32—C31—H31B	109.0
С17—С16—Н16А	109.1	H31A—C31—H31B	107.8
C15—C16—H16B	109.1	C33—C32—C31	178.94 (15)
C17—C16—H16B	109.1	С32—С33—Н33	180.0
C10-C1-C2-C3	-56.26(13)	C12-C13-C14-C27	88 45 (13)
C1 - C2 - C3 - O1	-17464(9)	C12 - C13 - C14 - C27	-8552(12)
C1 - C2 - C3 - C4	58 41 (13)	C12-C13-C14-C8	-32.28(14)
01 - C3 - C4 - C24	-5659(13)	C18 - C13 - C14 - C8	153 74 (10)
$C_2 - C_3 - C_4 - C_2 $	70 50 (12)	C7-C8-C14-C13	-17779(9)
01 - C3 - C4 - C23	60 48 (13)	$C_{26} = C_{8} = C_{14} = C_{13}$	-5940(11)
$C_{2} = C_{3} = C_{4} = C_{23}$	-17242(10)	$C_{20} = C_{10} = C_{11} = C_{13}$	60.87 (12)
01 - C3 - C4 - C5	177 88 (10)	C7 - C8 - C14 - C15	-5363(13)
$C_{2} = C_{3} = C_{4} = C_{5}$	-55.02(12)	$C_{26} = C_{8} = C_{14} = C_{15}$	64 75 (12)
$C_{24} - C_{4} - C_{5} - C_{6}$	63 27 (14)	$C_{20} = C_{10} = C_{11} = C_{12}$	-17498(10)
$C_{23} - C_{4} - C_{5} - C_{6}$	-57 75 (14)	C7-C8-C14-C27	65 18 (12)
C_{3} C_{4} C_{5} C_{6}	-17329(11)	$C_{26} = C_{8} = C_{14} = C_{27}$	-17643(9)
$C_{24} - C_{4} - C_{5} - C_{10}$	-68 75 (13)	C9-C8-C14-C27	-5616(12)
$C_{23} - C_{4} - C_{5} - C_{10}$	170 23 (10)	C_{13} C_{14} C_{15} C_{16}	-3749(16)
C_{3} C_{4} C_{5} C_{10}	54 69 (13)	C_{27} C_{14} C_{15} C_{16}	78 78 (13)
C10-C5-C6-C7	-6510(14)	C8-C14-C15-C16	-15935(11)
C4—C5—C6—C7	160.06 (10)	C14—C15—C16—C17	54.15 (15)
C_{5} C_{6} C_{7} C_{8}	58 01 (14)	C_{15} C_{16} C_{17} C_{28}	60.43 (13)
C6-C7-C8-C26	73 20 (12)	C15 - C16 - C17 - C22	179.01 (10)
C6-C7-C8-C9	-46.81 (14)	C15 - C16 - C17 - C18	-59.98(14)
C6-C7-C8-C14	-16633(10)	C12-C13-C18-C19	-85.20(13)
C7 - C8 - C9 - C11	178 96 (10)	C14-C13-C18-C19	88 79 (12)
C_{26}^{-} C_{8}^{-} C_{9}^{-} C_{11}^{-}	60 67 (12)	C_{12} C_{13} C_{18} C_{17}	147.22(12)
C14-C8-C9-C11	-59.97(12)	C12 = C13 = C16 = C17 C14 = C13 = C18 = C17	-38.79(15)
C7 - C8 - C9 - C10	44 66 (14)	C_{28} C_{17} C_{18} C_{13}	-70.48(12)
C26-C8-C9-C10	-73.64 (12)	C16—C17—C18—C13	50.69 (13)
C14—C8—C9—C10	165.72 (9)	C22-C17-C18-C13	171.44 (10)
C_{2} C_{1} C_{10} C_{25}	-72.74(12)	C_{28} C_{17} C_{18} C_{19}	164 22 (10)
C2-C1-C10-C5	51.10 (12)	C16-C17-C18-C19	-74.61 (12)
C2-C1-C10-C9	165.29 (10)	C22-C17-C18-C19	46.14 (14)
C6—C5—C10—C25	-65.74 (13)	C13—C18—C19—C20	-178.29 (9)
C4—C5—C10—C25	67.29 (13)	C17—C18—C19—C20	-51.35 (14)
C6—C5—C10—C1	174.08 (10)	C18—C19—C20—C29	-66.74 (13)
	× /		(-)

C4—C5—C10—C1	-52.88 (12)	C18-C19-C20-C30	176.58 (10)
C6—C5—C10—C9	58.55 (12)	C18-C19-C20-C21	55.41 (13)
C4—C5—C10—C9	-168.41 (9)	C19—C20—C21—C22	-57.84 (13)
C11—C9—C10—C25	-55.10 (13)	C29—C20—C21—C22	62.90 (13)
C8—C9—C10—C25	75.83 (12)	C30-C20-C21-C22	-177.68 (10)
C11—C9—C10—C1	64.45 (12)	C20-C21-C22-C17	57.88 (14)
C8—C9—C10—C1	-164.63 (10)	C28—C17—C22—C21	-169.30 (10)
C11—C9—C10—C5	179.40 (9)	C16—C17—C22—C21	70.36 (13)
C8—C9—C10—C5	-49.68 (13)	C18—C17—C22—C21	-50.22 (14)
C8—C9—C11—O2	-149.86 (12)	C31—N1—C29—O3	-2.50 (19)
C10-C9-C11-O2	-14.78 (17)	C31—N1—C29—C20	174.64 (11)
C8—C9—C11—C12	31.32 (14)	C19—C20—C29—O3	-20.57 (16)
C10-C9-C11-C12	166.40 (10)	C30—C20—C29—O3	97.56 (14)
O2-C11-C12-C13	179.31 (12)	C21—C20—C29—O3	-140.44 (12)
C9—C11—C12—C13	-1.82 (18)	C19—C20—C29—N1	162.32 (10)
C11—C12—C13—C18	176.53 (11)	C30-C20-C29-N1	-79.55 (13)
C11—C12—C13—C14	2.44 (18)	C21-C20-C29-N1	42.45 (14)
C12-C13-C14-C15	-154.75 (11)	C29—N1—C31—C32	106.52 (14)
C18—C13—C14—C15	31.27 (15)		

Hydrogen-bond geometry (Å, °)

Please add C—H··· π interaction to table				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
01—H10···C32 ⁱ	0.81 (2)	2.57 (2)	3.3559 (17)	164 (2)
01—H10···C33 ⁱ	0.81 (2)	2.40 (2)	3.0973 (17)	145 (2)
N1—H1N····O2 ⁱⁱ	0.80 (2)	2.57 (2)	3.2511 (15)	144 (2)
C31—H31B···O1 ⁱⁱⁱ	0.99	2.56	3.2541 (17)	127.
C33—H33····O2 ^{iv}	0.95	2.27	3.1154 (17)	148.

Symmetry codes: (i) -x+3/2, -y+1, z-1/2; (ii) -x+1, y+1/2, -z+1/2; (iii) -x+1/2, -y+1, z+1/2; (iv) -x+2, y+1/2, -z+1/2.

Fig. 1

